Release History
Version 0.1.6 (2021.11)
Enhancement:
All boosting-based methods now support
early_termination
, which can be used to enable/disable strict early termination for Adaboost training.Add utility functions
imbalanced_ensemble.datasets.generate_imbalance_data()
andimbalanced_ensemble.utils.evaluate_print()
to ease the test and evaluation.
Bug Fixes:
Fixed Resampling + Bagging models (e.g., OverBagging) raise error when used with base estimators that do not support sample_weight (e.g., sklearn.KNeighborsClassifier).
Fixed AttributeError occurs when initializing bagging-based models.
Version 0.1.5 (2021.08)
Enhancement:
imbalanced_ensemble.sampler.under_sampling.RandomUnderSampler
now supportsample_proba
(the probability of each instance being sampled, notsample_weight
).
Bug Fixes:
Fixed ValueError when using
imbalanced_ensemble.visualizer.ImbalancedEnsembleVisualizer
withseaborn
v0.11.2.Fixed all ensemble algorithms (error or performance issue) when the classification targets do not begin with 0.
Version 0.1.4 (2021.06)
Enhancement:
imbalanced_ensemble.visualizer.ImbalancedEnsembleVisualizer.performance_lineplot()
: add optionon_metrics
to select evaluation metrics to include in the plot.imbalanced_ensemble.visualizer.ImbalancedEnsembleVisualizer.confusion_matrix_heatmap()
: add optionfalse_pred_only
to control whether to plot only the false predictions in the confusion matrix.Add some utilities for data visualization in
imbalanced_ensemble.utils._plot
.
Documentation:
Add more comprehensive examples in the examples gallery (11 new, 16 in total).
Add a Chinese README.
Maintenance:
imbalanced_ensemble.utils.testing.all_estimators()
now support'ensemble'
type_filter.Renamed some functions in
imbalanced_ensemble.utils._validation_param
to improve readability
Bug Fixes:
Version 0.1.3 (2021.06)
Bug Fixes:
Fixed a typo bug in
imbalanced_ensemble.ensemble.BalanceCascadeClassifier
.Fixed an import Error in
imbalanced_ensemble.ensembleCompatibleAdaBoostClassifier
.
Version 0.1.2 (2021.05)
Enhancement:
Add support for metric functions that take probability as input.
Boosting-based classifiers now will print a message when the training is early terminated.
imbalanced_ensemble.visualizer.ImbalancedEnsembleVisualizer.performance_lineplot()
:granularity
now can be automatically set.
Maintenance:
All ensemble classifiers now can be directly imported from the
imbalanced_ensemble.ensemble
module.The default value of
train_verbose
ofClassifier.fit()
:True
->False
.The default value of
n_estimators
ofClassifier.__init__()
: 50 for all ensemble classifiers.The default value of
granularity
ofVisualizer.fit()
: 5 ->None
(automatically determined).imbalanced_ensemble.visualizer.ImbalancedEnsembleVisualizer.confusion_matrix_heatmap()
: swap rows and columns, now rows/columns correspond to datasets/methods.
Bug Fixes:
Fixed
ZeroDivisionError
when usingimbalanced_ensemble.sampler.under_sampling.SelfPacedUnderSampler
.
Version 0.1.1 (2021.05)
Bug Fixes:
Unexpected print messages when using the
imbalanced_ensemble.pipeline
module.
Version 0.1.0 (2021.05)
Initial release.