Note
Click here to download the full example code
Generate an imbalanced dataset
An illustration of using the
generate_imbalance_data()
function to create an imbalanced dataset.
# Authors: Zhining Liu <zhining.liu@outlook.com>
# License: MIT
print(__doc__)
from imbalanced_ensemble.datasets import generate_imbalance_data
from imbalanced_ensemble.utils._plot import plot_2Dprojection_and_cardinality
from collections import Counter
Generate the dataset
X_train, X_test, y_train, y_test = generate_imbalance_data(
n_samples=1000, weights=[.7,.2,.1], test_size=.5,
kwargs={'n_informative': 3},
)
print ("Train class distribution: ", Counter(y_train))
print ("Test class distribution: ", Counter(y_test))
Out:
Train class distribution: Counter({0: 348, 1: 101, 2: 51})
Test class distribution: Counter({0: 348, 1: 101, 2: 51})
Plot the generated (training) data
plot_2Dprojection_and_cardinality(X_train, y_train)

Out:
(<Figure size 1000x400 with 2 Axes>, (<AxesSubplot:title={'center':'Dataset (2D projection by KernelPCA)'}>, <AxesSubplot:title={'center':'Class Distribution'}, xlabel='Class'>))
Total running time of the script: ( 0 minutes 40.896 seconds)
Estimated memory usage: 21 MB