evaluate_print
- imbalanced_ensemble.utils.evaluate_print(y_true, y_pred, head: str = '', eval_metrics: dict = {'balanced Acc': (<function balanced_accuracy_score>, {}), 'macro Fscore': (<function f1_score>, {'average': 'macro'}), 'macro Gmean': (<function geometric_mean_score>, {'average': 'macro'})}, print_str: bool = True, return_str: bool = False)
Evaluate and print the predictive performance with respect to the given metrics.
Returns a string of evaluation results.
- Parameters
- y_true1d array-like, or label indicator array / sparse matrix
Ground truth (correct) target values.
- y_pred1d array-like, or label indicator array / sparse matrix
Estimated targets as returned by a classifier.
- headstring, default=””
Head of the returned string, for example, the name of the predictor.
- eval_metricsdict, default=None
Metric(s) used for evaluation during the ensemble training process.
If
None
, use 3 default metrics:'balanced Acc'
:sklearn.metrics.balanced_accuracy_score()
'macro F1'
:sklearn.metrics.f1_score(average='macro')
'macro Gmean'
:imbens.metrics.geometric_mean_score(average='macro')
- If
dict
, the keys should be strings corresponding to evaluation metrics’ names. The values should be tuples corresponding to the metric function (
callable
) and additional kwargs (dict
).- The metric function should at least take 2 named/keyword arguments,
y_true
and one of [y_pred
,y_score
], and returns a float as the evaluation score. Keyword arguments:y_true
, 1d-array of shape (n_samples,), true labels or binary
label indicators corresponds to ground truth (correct) labels. - When using
y_pred
, input will be 1d-array of shape (n_samples,) corresponds to predicted labels, as returned by a classifier. - When usingy_score
, input will be 2d-array of shape (n_samples, n_classes,) corresponds to probability estimates provided by the predict_proba method. In addition, the order of the class scores must correspond to the order oflabels
, if provided in the metric function, or else to the numerical or lexicographical order of the labels iny_true
.
- The metric additional kwargs should be a dictionary that specifies
the additional arguments that need to be passed into the metric function.
- If
- print_strbool, defaul=True
Whether to print the results to stdout. If False, disable print.
- return_strbool, defaul=False
Whether to return the result string. If True, returns it.
- Returns
- result_strstring or NoneType